MTH 310 HW 4 Solutions

Jan 29, 2016

Section 3.1 Problem 10

Is $\{(a, b) \in \mathbb{Z}x\mathbb{Z} | a + b = 0\}$ a subring of $\mathbb{Z}x\mathbb{Z}$?

Answer. No. Since all rings are closed under multiplication, we need only show that if $S = \{(a, b) \in \mathbb{Z}x\mathbb{Z} | a+b=0\}$, then S is not closed under multiplication. To show this, note that $(1, -1) \in S$ (since 1 + (-1) = 0), but $(1, -1)(1, -1) = (1 * 1, (-1) * (-1)) = (1, 1) \notin S$, since $1 + 1 \neq 0$.

Section 3.2, Problem 3b

Find all idempotent elements in Z_{12} .

Answer. Recall that an element *e* in a ring is idempotent if $e^2 = e$. Note that $1^2 = 5^2 = 7^2 = 11^2 = 1$ in Z_{12} , and $0^2 = 0$, $2^2 = 4$, $3^2 = 9$, $4^2 = 4$, $6^2 = 0$, $8^2 = 4$, $9^2 = 9$, $10^2 = 4$. Therefore the idempotent elements are 0, 1, 4, iand 9.

Section 3.2, Problem 42

Prove that a finite ring R with identity has characteristic n for some n > 0.

Answer. Consider the set $S = \{n*1 | n \in \mathbb{N}\} = \{1, 1+1, 1+1+1, ...\}$, where $\mathbb{N} = \{1, 2, 3, ...\}$. Then since R is closed under (finite) addition, $S \subset R$. But R is finite, so S must be finite as well. In particular, there are some $q, r \in \mathbb{N}$ with q * 1 = r * 1. Swapping the values of q and r if necessary, we may assume q > r. Then by the distributive property of R we obtain (q - r) * 1 = 0. Thus since there is an n with n * 1 = 0, there is a smallest n with n * 1 = 0, so R has finite characteristic.